Some Addition Reactions of \boldsymbol{N}-Tributylstannyldiphenylmethyleneamine

By P. G. Harrison, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

Abstract

N-Tributylstannyldiphenylmethyleneamine reacts with the multiply bonded reagents isocyanates, isothiocyanates. aldehydes, ketones, acrylonitrile, di- α-naphthylcarbodi-imide, N-phenylsulphinylamine, sulphur dioxide, trichloroacetonitrile, carbon disulphide, and carbonyl sulphide to form 11 new classes of organotinamino-derivatives. Many of the adducts are readily hydrolysed to the hitherto unreported protic compounds, which have also been synthesised from reaction between diphenylmethyleneamine and the acceptor reagent. The addition of chloral to the aldehyde adducts results in the elimination of aldehyde and the formation of the chloral adduct: except in the case of the bromal adduct, where further addition takes place. Addition also appears to take place with iso(thio)cyanates: equilibria being established in some cases.

Reactions involving the addition of a metal- or metal-loid-nitrogen bond, $\mathrm{M}-\mathrm{N}$, across the multiple bond of an unsaturated substrate, $A=B$, have been characterised for a wide range of amino-derivatives. ${ }^{1}$ No similar reactions involving N-metallo-imines have been investigated. Ketimine (azomethine $=$ methyleneamine) derivatives of lithium, ${ }^{2,3}$ magnesium, ${ }^{4}$ boron, ${ }^{2}$ aluminium, ${ }^{5}$ silicon, ${ }^{2,3}$ germanium, ${ }^{3}$ and tin 3 have been prepared but few reactions are known. N-Lithio, ${ }^{2,3}$ -magnesyl, ${ }^{4}$ and -silyl ${ }^{2}$ derivatives have been used as ketimino-transfer reagents; and ketimine-enamine tautomerism has been demonstrated for silicon derivatives which possess the $\mathrm{Si}-\mathrm{N}=\mathrm{C}-\mathrm{C}-\mathrm{H}$ grouping. ${ }^{3}$ Here we report some addition reactions of N -tributylstannyldiphenylmethyleneamine (I) and the parent diphenylmethyleneamine.

DISCUSSION

N -Tributylstannyldiphenylmethyleneamine (I) reacted rapidly and exothermically with alkyl and aryl isocyanates to give N-tributylstannyl- N-alkyl(aryl)- N^{\prime} diphenylmethyleneaminoureas (II) as viscous, golden yellow oils. Rapid hydrolysis of these yields the hitherto unreported amino-ureas (IIa) as white solids with sharp melting points. Identical products are obtained from the direct reaction of the diphenylmethylene and the same isocyanate.

Methyl and phenyl isothiocyanate also reacted rapidly and exothermically to give orange-yellow oils. The

[^0]N-phenyl derivative, which is stable to atmospheric moisture, may also be prepared from bistributyltin oxide and N-phenyl- N^{\prime}-diphenylmethyleneaminothiourea in boiling benzene. An analogous reaction for N-methyl compound fails to occur, the N-tributylstannyl derivative of which is readily hydrolysed to the parent compound. Two intense $v(\mathrm{C}=\mathrm{N})$ stretching frequencies at 1595 and $1620 \mathrm{~cm}^{-1}$ and the lack of bands which are readily assignable to $v(\mathrm{C}=\mathrm{S})$ in the i.r. spectrum of both adducts suggest the $\mathrm{Sn}^{-} \mathrm{S}$ bonded structure.
With aldehydes and activated ketones, compound (I) reacts exothermically to give O-tributylstannyl acetals (IV; $\mathrm{R}^{2}=\mathrm{H}$) and O-tributylstannyl acetals (IV; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CCl}_{3} ; \mathrm{R}^{1}=\mathrm{CCl}_{2} \mathrm{~F}, \mathrm{R}^{2}=\mathrm{CClF}_{2}$) as almost
$$
\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{~N}: \mathrm{CPh}_{2}+\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{CO} \longrightarrow \mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CR}^{1} \mathrm{R}^{2} \cdot \mathrm{~N}: \mathrm{CPh}_{2}
$$
colourless viscous oils. When $\mathrm{R}^{2}=\mathrm{H}$ and $\mathrm{R}^{1}=\mathrm{CCl}_{3}$, $\mathrm{CBr}^{3}, \mathrm{Ph}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}$ reaction proceeds to completion; $\mathrm{R}=\mathrm{Pr}^{\mathrm{n}}$, an equilibrium is established.

Details of the reaction of compound (I) with other acceptor molecules is given in Table 1. All the compounds (V)-(XI) were coloured oils, which were [except (X)] easily hydrolysed by atmospheric moisture.

Because the aldehydic, $\mathrm{CH}=\mathrm{O}$, and acetal ($\mathrm{CH}-\mathrm{O}$) protons fall in clear regions, it was possible to undertake a brief examination of the relative acceptor strengths and reactivities of the various multiply bonded acceptor molecules.

Addition of 1 mol of an acceptor molecule, $\mathrm{A}=\mathrm{B}$, to the adduct of (I) and an aldehyde, $\mathrm{RCH}=\mathrm{O}$, can result in either displacement or further addition, six- and fourcentre, respectively, transition states being easily accessible. ${ }^{6}$ One might expect the acetal proton of

$$
\begin{align*}
& \mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{~A}-\mathrm{B} \cdot \mathrm{~N}: \mathrm{CPh}_{2}+\mathrm{RCH}=\mathrm{O} \tag{4}
\end{align*}
$$

(XII) to be more deshielded than that in (XIII) and hence moved to slightly lower field. The results are given in Table 2.

With the sole exception of the bromal adduct, with
${ }^{3}$ L.-H. Chan and E. G. Rochow, J. Organometallic Chem., 1967, 9, 231.
${ }^{4}$ 'P. L. Pickard and J. Tolbert, J. Org. Chem., 1961, 26, 4886; and references contained therein.
${ }^{5}$ K. Wade and B. K. Wyatt, J. Chem. Soc. (A), 1969, 1121.
${ }^{6}$ A. G. Davies and W. R. Symes, J. Chem. Soc. (C), 1967, 1009 .

Table 1
Products of the reaction of $\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{N}=\mathrm{CPh}_{2}$ with weaker acceptors

					Sn A	lysis	($\mathrm{C}=\mathrm{N}$)
	$\mathrm{A}=\mathrm{B}$	Conditions	Structure of adduct	Colour	Found	Reqd.	(cm^{-1})
(V)	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{N}$	10 min . at room temp.	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CH}_{2} \cdot \mathrm{~N}=\mathrm{CPh}_{2}{ }^{\text {a }}$	Pale yellow	22.2	22.7	1620 m
(VI)	$\alpha-\mathrm{Np} \cdot \mathrm{N}=\mathrm{C}=\mathrm{N} \cdot \alpha-\mathrm{Np}$	Immediate	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{N}(\alpha-\mathrm{Np}) \cdot \mathrm{C}(\mathrm{N} \cdot \alpha-\mathrm{Np}) \cdot \mathrm{N}=\mathrm{CPh}_{2}{ }^{\text {b }}$	Orange-red			1630s
(VII)	$\mathrm{PhN}=\mathrm{S}=\mathrm{O}$	Exothermic	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NPh} \cdot \mathrm{S}(\mathrm{O}) \cdot \mathrm{N}=\mathrm{CPh}_{2}$	Orange-red			1590 m
(VIII)	$\mathrm{O}=\mathrm{S}=\mathrm{O}$	Exothermic	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{S}(: \mathrm{O}) \cdot \mathrm{N}=\mathrm{CPh}_{2}{ }^{\text {c }}$	Yellow	$21 \cdot 6$	22.2	1595 m
(IX)	$\mathrm{CCl}_{3} \cdot \mathrm{C} \equiv \mathrm{N}$	0.5 hr at room temp.	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{N}=\mathrm{C}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}{ }^{\text {d }}$	Yellow	$20 \cdot 2$	$20 \cdot 6$	$1650 \mathrm{~m}, 1620 \mathrm{~s}$
(X)	$\mathrm{S}=\mathrm{C}=\mathrm{S}$	5 min . at room temp.	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{S} \cdot \mathrm{C}(: \mathrm{S}) \cdot \mathrm{N}=\mathrm{CPh}_{2}{ }^{e}$	Deep red	19.0	19.4	1625s
(XI)	$\mathrm{O}=\mathrm{C}=\mathrm{S}$	5 min . at room temp.	$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{C}(: \mathrm{S}) \cdot \mathrm{N}=\mathrm{CPh}_{2}{ }^{f}$	Pale yellow	19.5	20.0	1640s, 1625s

${ }^{a} \nu_{\mathrm{C}=\mathrm{x}} 2210 \mathrm{w} \mathrm{cm}{ }^{-1}$; n.m.r. triplet $\tau 7.94(\mathrm{lH})$, doublet $-6.49(2 \mathrm{H}), J(\mathrm{H}-\mathrm{H})=6.6 \mathrm{~Hz}, J(\mathrm{Sn}-\mathrm{H})=39.6 \mathrm{~Hz} . \quad{ }^{b}$ Hydrolysis yields N - α-naphthyl- N^{\prime}-diphenylmethyleneamino- $N^{\prime}-\alpha$-naphthylguanidine, m.p. 210° (decomp.) (Found: C, $86 \cdot 9 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, \mathbf{8 . 0} \%$. $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3}$ requires $\left.\mathrm{C}, 85 \cdot 9 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 8 \cdot 8 \%\right)$. ${ }^{\circ} \nu_{\mathrm{S}=\mathrm{o}} \mathrm{l} 000 \mathrm{vs} \mathrm{cm}^{-1}$ broad. ${ }^{d} \nu_{\mathrm{C}-\mathrm{cl}} 790 \mathrm{vs} \mathrm{cm}^{-1} .{ }^{\bullet} \nu_{\mathrm{C}=\mathrm{s}} 1120 \mathrm{vs} \mathrm{cm}^{-1} .{ }^{f} \nu_{\mathrm{C}=\mathrm{s}} 1190 \mathrm{~s}$; $\nu_{\mathrm{C}-0}: 1080 \mathrm{~s}$, and $1055 \mathrm{~s} \mathrm{~cm}^{-1}$.

Table 2
Products of the reaction of $\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CHR} \cdot \mathrm{N}=\mathrm{CPh}_{2}$ and $\mathrm{A}=\mathrm{B}^{a}$
$\mathrm{R} \quad \mathrm{A}=\mathrm{B}$

Aldehydes:

CCl_{3}	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$
CBr_{3}	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$
Me	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$
Pr	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$
Et	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$
Ph	$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$

2 days (33.5)
Exothermic
Immediate
Immediate
Mildly exothermic
Immediate

```
No reaction
\(\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CBr}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}\) \(\tau 4.80\); \(\tau 5.06\)
\(\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}+\mathrm{MeCHO}\) \(\div 4.81 \quad\) quartet \(\div 0.32, J(\mathrm{H}-\mathrm{H})=2.8 \mathrm{~Hz}\)
\(\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}+\mathrm{Pr}^{\mathrm{i}} \mathrm{CHO}\) \(=4.80 \quad\) doublet \(\tau 0.43, J(\mathrm{H}-\mathrm{H})=1.6 \mathrm{~Hz}\)
\(\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}+\mathrm{EtCHO}\)
\(\tau 4.81 \quad\) triplet \(\tau 0.27, J(\mathrm{H}-\mathrm{H})=1.3 \mathrm{~Hz}\)
\(\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}+\mathrm{PhCHO}\)
\begin{tabular}{|c|c|}
\hline [ \(\left(\mathrm{CCl}_{3}\right)_{2} \mathrm{CO}\) adduct] & \[
+\underset{\tau \mathrm{l} \cdot 30}{\mathrm{CBr}_{3} \cdot \mathrm{CHO}}(10 \%)^{\circ}
\] \\
\hline \(\left[\mathrm{CCl}_{2} \mathrm{~F} \cdot \mathrm{CO} \cdot \mathrm{CClF}_{2}\right.\) adduct] &  \\
\hline \(\left[\mathrm{CCl}_{2} \mathrm{~F} \cdot \mathrm{CO} \cdot \mathrm{CClF}_{2}\right.\) adduct] & \(+\mathrm{PhCHO}\) \\
\hline [ \(\left(\mathrm{CCl}_{3}\right)_{2} \mathrm{CO}\) adduct] & \[
\begin{aligned}
& +\mathrm{MeCHO}(5 \%) \\
& \quad \text { quartet } \tau 0.30, J(\mathrm{H}-\mathrm{H})=2.5 \mathrm{~Hz}
\end{aligned}
\] \\
\hline
\end{tabular}
```

Ketones:

CBr_{3}	$\left(\mathrm{CCl}_{3}\right)_{2} \mathrm{CO}$	5 days $(33 \cdot 5)$
CBr_{3}	$\left(\mathrm{CCl}_{2} \mathrm{~F} \cdot \mathrm{CO} \cdot \mathrm{CF}_{2} \mathrm{Cl}\right.$	$17 \mathrm{hr}(\mathrm{RT})^{b}$
Ph	$\mathrm{CCl}_{2} \mathrm{~F} \cdot \mathrm{CO} \cdot \mathrm{CF}_{2} \mathrm{Cl}$	Immediate
Me	$\left(\mathrm{CCl}_{3}\right)_{2} \mathrm{CO}$	$44 \mathrm{hr}(\mathrm{RT})^{b}$

Isocyanates:

Me	$\mathrm{MeN}=\mathrm{C}=\mathrm{O}$	Exothermic
Me	$\mathrm{EtN}=\mathrm{C}=\mathrm{O}$	$1 \mathrm{hr}(\mathrm{RT})^{b}$
Me	$\mathrm{PhN}=\mathrm{C}=\mathrm{O}$	Exothermic
CBr_{3}	$\mathrm{MeN}=\mathrm{C}=\mathrm{O}$	$17 \mathrm{hr}(\mathbf{3 3 \cdot 5})$
CBr_{3}	$\mathrm{EtN}=\mathrm{C}=\mathrm{O}$	$\mathbf{1 7 h r (3 3 \cdot 5)}$
CBr_{3}	$\mathrm{PhN}=\mathrm{C}=\mathrm{O}$	$17 \mathrm{hr}(\mathbf{3 3 \cdot 5})^{2}$
Ph	$\mathrm{EtN}=\mathrm{C}=\mathrm{O}$	$1 \mathrm{hr}(\mathrm{RT})^{b}$
Ph	$\mathrm{PhN}=\mathrm{C}=\mathrm{O}$	Exothermic

$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NMe} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}(\mathrm{Me}) \cdot \mathrm{N}=\mathrm{CPh}_{2}$ quartet $\tau 4 \cdot 40, J=6 \mathrm{~Hz}^{\text {d }}$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NEt} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}(\mathrm{Me}) \cdot \mathrm{N}=\mathrm{CPh}_{2}$ quartet $\tau 4 \cdot 18, J=6 \mathrm{~Hz}$ 。
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NPh} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}(\mathrm{Me}) \mathrm{N}=\mathrm{CPh}_{2}$ quartet $\tau 4 \cdot 14, J=6 \mathrm{~Hz}$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NMe} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CBr}_{3}\right) \mathrm{N}=\mathrm{CPh}_{3}(75 \%){ }^{\circ}$ $\tau 3.78{ }^{f}$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NEt} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CBr}_{3}\right) \mathrm{N}=\mathrm{CPh}_{2}(50 \%)$ $\tau 3.80{ }^{g}$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NPh} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CBr}_{3}\right) \mathrm{N}=\mathrm{CPh}_{2}(80 \%)$ $\tau 3.71$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NEt} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CHPh} \cdot \mathrm{N}=\mathrm{CPh}_{2}$ ч $3 \cdot 48^{\text {h }}$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{NPh} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CHPh} \cdot \mathrm{N}=\mathrm{CPh}_{2}$ $\tau 3.39$
Isothiocyanates:
Me $\quad \mathrm{PhN}=\mathrm{C}=\mathrm{S} \quad 44 \mathrm{hr}(\mathrm{RT})$
$\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{S} \cdot \mathrm{N}(=\mathrm{CPh}) \cdot \mathrm{O} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{N}=\mathrm{CPh}_{2}(50 \%)$
quartet $\tau 4 \cdot 11, J=6 \mathrm{~Hz}$
${ }^{a} \mathrm{In} \mathrm{CCl}_{4}$ solution. τ Values refer to acetal or aldehydic protons. All reactions went to completion unless otherwise stated. ${ }^{b} \mathrm{RT}=$ room temperature $\left(c a .20^{\circ}\right) .{ }^{c}$ By integration. ${ }^{d} \tau 7.30\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$. © Unresolved quartet $\tau 6.90\left(\mathrm{~N}^{\circ}-\mathrm{CH}_{2}\right)$. ${ }^{f} \tau 7 \cdot 22$ $\left(\mathrm{N}-\mathrm{CH}_{3}\right) . g$ Unresolved quartet $\tau 6.70\left(\mathrm{~N}-\mathrm{CH}_{2}\right) .{ }^{h}$ Unresolved quartet $\tau 6.90\left(\mathrm{~N}-\mathrm{CH}_{2}\right)$.
which chloral appeared to form a double adduct similarto those observed with tributyltin methoxide and bistributyltin oxide and 2 mol of chloral, ${ }^{6}$ the addition of 1 mol of chloral to the aldehyde adducts resulted in complete displacement of the aldehyde and the form-
ation of the chloral adduct. No reaction between chloral and the chloral adduct could be detected even after two days at $33 \cdot 5^{\circ}$. The hexahalogeno-ketones are much weaker acceptors, and mixtures of the ketones and the aldehyde adducts resulted in equilibria between free
aldehyde, free ketone, and their two respective adducts. Isocyanates and isothiocyanates behaved differently; inserting into the $\mathrm{Sn}-\mathrm{O}$ bond of the aldehyde adducts, like the well characterised reactions of organotin oxides and alkoxides. 7,8 No elimination of aldehyde could be detected, although, in many cases, equilibria were set up, consistent with the deactivated nature of the alkoxides.

EXPERIMENTAL

All manipulations were performed under an atmosphere of dry nitrogen.

Table 3
Products of the reaction of $\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{N}=\mathrm{CPh}_{2}$ with isocyanates and isothiocyanates

N-Tributylstannyldiphenylmethyleneamine was prepared by the method of Chan and Rochow ${ }^{3}$ as a yellow oil, b.p. $180^{\circ} / 0.3 \mathrm{~mm}, \nu_{\mathrm{C}=\mathrm{N}}: 1620 \mathrm{vs} \mathrm{cm}^{-1}$. Diphenylmethyleneamine was prepared according to Pickard and Tolbert ${ }^{4}$ as a colourless oil, b.p. $103^{\circ} / 0.35 \mathrm{~mm}, \nu_{\mathrm{C}=\mathrm{N}}: 1605 \mathrm{~s}, \nu_{\mathrm{N}-\mathrm{H}}: 3250 \mathrm{w}$; $\tau 0.31(\mathrm{~N}-\mathrm{H})$.

Further Reactions of the Aldehyde Adducts.-These reactions were carried out on an n.m.r. scale in ca. $10 \% \mathrm{CCl}_{4}$ solution. Typically, the aldehyde adduct was prepared as described above, then an equimolecular quantity of the appropriate reagent was added, and the course of the

Table 4
Products of the reaction $\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{N}=\mathrm{CPh}_{2}+\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{O} \longrightarrow$ $\mathrm{Bu}_{3} \mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{CR}^{1} \mathrm{R}^{2} \cdot \mathrm{~N}: \mathrm{CPh}_{2}$

R^{1}	R ${ }^{2}$	\% Reaction	τ (CH)	$\underset{(\mathrm{Hz})}{J(\mathrm{H}-\mathrm{H})}$	$J(\underset{(\mathrm{~Hz}-\mathrm{H})}{ }$
$\mathrm{CCl}_{3}{ }^{\text {a }}$	H	100	4.81		38.4
$\mathrm{CBr}_{3}{ }^{\text {a }}$	H	100	$5 \cdot 26$		36.0
$\mathrm{Me}{ }^{\text {b }}$	H	100	$4.88{ }^{\text {c }}$	$5 \cdot 6$	
Et	H	100	$5 \cdot 19{ }^{\text {e }}$	6.0	
Pri	H	100	$5 \cdot 48{ }^{\prime}$	$6 \cdot 6$	
$\mathrm{Pr}^{\text {n }}$	H	$85^{\text {d }}$	$5.07{ }^{\circ}$	$8 \cdot 4$	
$\mathrm{Ph}{ }^{9}$	H	100	$4 \cdot 09$		51.0
CCl_{3}	$\mathrm{CCl}_{3}{ }^{h}$	100			
$\mathrm{CCl}_{2} \mathrm{~F}$	$\mathrm{CClF}_{2}{ }^{\text {i }}$	100			

${ }^{a} \nu_{\mathrm{C}=\mathrm{N}}: 1620 \mathrm{~s} \mathrm{~cm}^{-1}$ (Found: $\mathrm{Sn}, 18.7 \%$. Required: Sn , $19 \cdot 2 \%$). ${ }^{b} \nu_{\mathrm{C}=\mathrm{y}}: 1650 \mathrm{~s} \mathrm{~cm}^{-1}$ (Found: $\mathrm{Sn}, 22 \cdot 5 \%$. Required: $\mathrm{Sn}, \mathbf{2 3} \cdot 1 \%$). ${ }^{c}$ Centre of quartet. Also doublet $\div \mathbf{7 . 9 5} .{ }^{d}$ By integration. e Centre of triplet. ${ }^{f}$ Centre of doublet. I $\nu_{\mathrm{C}=\mathrm{N}}$: $1640 \mathrm{~s} \mathrm{~cm}^{-1}$ (Found: $\mathrm{Sn}, 20.1 \%$. Required: $\mathrm{Sn}, 20.6 \%$). ${ }^{h} \nu_{\mathrm{C}_{\mathrm{N}}}: 1640 \mathrm{~s} ; \nu_{\mathrm{C}-\mathrm{O}}: 1180 \mathrm{~s} ; \nu_{\mathrm{C}-\mathrm{Cl}}: 875 \mathrm{~s}, 840 \mathrm{vs} \mathrm{cm}^{-1}$ (Found: Sn, 15.5%. Required: $\mathrm{Sn}, 16 \cdot 2 \%$). ${ }^{i} \nu_{\mathrm{c}=\mathrm{y}}$: 1650 s ; $\nu_{\mathrm{C}-\mathrm{o}}: 1195 \mathrm{~s}, 1155 \mathrm{vs} ; \nu_{\mathrm{C}-\mathrm{F}}: 1040 \mathrm{~s} ; \nu_{\mathrm{C}-\mathrm{Cl}}: 880 \mathrm{~s} \mathrm{~cm}^{-1}$ (Found: Sn, $17 \cdot 0 \%$. Required: Sn, $17 \cdot 3 \%)$. ${ }^{k} \nu_{\mathrm{C}=\mathrm{N}}: 1630 \mathrm{~s} \mathrm{~cm}^{-1}$ (Found: Sn, $15 \cdot 6 \%$. Required: Sn, $15 \cdot 8 \%$).
reaction was followed by observing the acetal-aldehyde proton in the n.m.r. Details are given in Table 2.
Reactions of Diphenylmethyleneamine with Acceptor Mole-cules.-Typically the reagents were mixed in light petroleum

Table 5
Derivatives of diphenylmethyleneamine

								nalys	is (\%)		
							Calc.			Found	
$\mathrm{A}=\mathrm{B}$	Product	M.p.	Colour	$\begin{aligned} & \left(\mathrm{cm}^{\mathrm{N}-1}\right) \end{aligned}$	$\left(\begin{array}{c} \nu_{\mathrm{CO}}^{\mathrm{O}} \mathrm{~N} \end{array}\right)$	C	H	N	C	H	N
$\mathrm{MeN}=\mathrm{C}=\mathrm{O}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{NMeH}^{\text {a }}$	179-180 ${ }^{\circ}$	White	3250s	1645vs	$75 \cdot 6$	$5 \cdot 9$	11.8	76.0	$6 \cdot 2$	11.7
$\mathrm{EtN}=\mathrm{C}=\mathrm{O}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{NEtH}{ }^{\text {a }}$	155-156	White	3240s	$\begin{aligned} & 1645 \mathrm{vs}, \\ & 1620 \mathrm{~s} \end{aligned}$	$76 \cdot 2$	$6 \cdot 4$	$11 \cdot 1$	76.2	6.7	11-1
$\mathrm{BuN}=\mathrm{C}=\mathrm{O}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{NBuH}^{\text {a }}$	93-95	White	3250s	1625 vs , br	$77 \cdot 1$	$7 \cdot 1$	10.0	76.6	$7 \cdot 4$	9.9
$\mathrm{PhN}=\mathrm{C}=\mathrm{O}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{NPhH}{ }^{\text {a }}$	152.5-154	White	3270s	1650 vs	79.9	$5 \cdot 3$	$9 \cdot 3$	79.6	$5 \cdot 7$	$9 \cdot 3$
$\mathrm{MeN}=\mathrm{C}=\mathrm{S}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CS} \cdot \mathrm{NMeH}{ }^{\text {a }}$	162-164	Pale yellow	3160 s	1615 m	71.0	$5 \cdot 5$	11.0	69.9	$5 \cdot 5$	10.7
$\mathrm{PhN}=\mathrm{C}=\mathrm{S}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CS} \cdot \mathrm{NPhH}{ }^{\text {a }}$	136-137	Yellow	3190 s	1645vs	76.0	$5 \cdot 1$	$8 \cdot 9$	76.0	$5 \cdot 5$	$8 \cdot 6$
$\mathrm{CCl}_{3} \cdot \mathrm{CHO}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CH}\left(\mathrm{CCl}_{3}\right) \cdot \mathrm{OH}^{\text {b }}$	105-107	White	3160 s	1615vs	54.9	3.7	$4 \cdot 3$	$54 \cdot 6$	3.5	$3 \cdot 8$
$\mathrm{CBr}_{3} \cdot \mathrm{CHO}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{CH}\left(\mathrm{CBr}_{3}\right) \cdot \mathrm{OH}{ }^{\text {c }}$	97-100	White	3200 s	1615vs	$39 \cdot 0$	$2 \cdot 6$	3.0	$40 \cdot 8$	2.9	$3 \cdot 0$
$\alpha-\mathrm{N} \cdot \mathrm{N}=\mathrm{C}=\mathrm{N} \cdot \alpha-\mathrm{N} \mathrm{p}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N} \cdot \mathrm{C}(: \mathrm{N} \cdot \alpha-\mathrm{N} p) \cdot \mathrm{N} \cdot \alpha-\mathrm{Np}$	$\begin{gathered} 210 \\ \text { (decomp.) } \end{gathered}$	Yellow	3210 m	1640s	$85 \cdot 9$	$5 \cdot 3$	$8 \cdot 8$	$85 \cdot 3$	$6 \cdot 0$	$8 \cdot 2$
${ }^{a}$ Too insol. for 3.95 (broad) -(C	$\begin{aligned} & \text { n.m.r. } \quad{ }^{b} \text { N.m.r. }\left(\mathrm{CDCl}_{3}\right. \text { soln. } \\ & -\mathrm{OH}) . \end{aligned}$	$: \tau 5.19(\mathrm{C}$	$\text { f), } 5 \cdot 51(\mathrm{br}$	$(-\mathrm{C}-\mathrm{O}$	${ }^{\circ}$ N.m.r	(CD		n.) :	5	(-C	-H),

I.r. spectra were recorded using a Unicam SP 200 instrument as Nujol mulls or liquid films. N.m.r. spectra were recorded at $33 \cdot 5^{\circ}$ using a Perkin-Elmer R10 instrument in ca. $10 \% \mathrm{CCl}_{4}$ solution with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Tin was determined gravimetrically as stannic oxide.

The Addition of N -Tributylstannyldiphenylmethyleneamine to Acceptor Molecules.-Details of the addition of compound (I) to acceptor molecules are given in Tables 1,3, and 4.

7 A. G. Davies and P. G. Harrison, J. Chem. Soc. (C), 1967, 1313.
ether, when an exothermic reaction was accompanied by crystallisation of the product. Physical data is given in Table 5.

We thank Professor A. G. Davies for useful discussions.
[1/625 Received, April 27th, 1971]
${ }^{8}$ P. G. Harrison and J. J. Zuckerman, Inorg. Chem., 1970, 9, 175 .

[^0]: ${ }^{1}$ M. F. Lappert and B. Prokai, Adv. Organometallic Chem., 1967, 5, 225.
 ${ }_{2}$ C. Summerford and K. Wade, J. Chem. Soc. (A), 1969, 1487.

